

1 Introduction

This Recommended Practice (RP-11) was published to coordinate the expectations of modelers with the capabilities of model manufacturers concerning the minimum radius that could be negotiated by various “classes” of equipment. In order to build a model railroad layout in the space available,

5 curve radii must be reduced by much more than the scale factor of the scale selected, such as 1 to 87.1 for HO scale. However, such reduction in radius can be achieved only by compromising some of the aspects of the prototype which limit track curvature. The values shown below reflect a judgment of the trade-off between practical space requirements and the need to accommodate greater truck rotation and coupler swing by adjusting or eliminating underbody detail.

10 Modelers pick up RP-11 to answer two basic questions:

- Equipment purchase: can a specific locomotive or car run on the minimum radius of my home or club layout?
- Layout design: what radius should I design to accommodate a type of locomotives or cars I intend to run, even if I have not yet purchased them?

15 The tightest railroad curves built by the prototype were on streetcar lines, then somewhat broader on interurban and narrow-gauge lines. Short four-wheel cars were the most forgiving of tight curves and rigid frame locomotives, primarily steam, were the least.

2 Technical Note

In the 1992 edition of RP-11 changes were made which were driven by a need to offer specific recommendations for the most common sizes of HO sectional track, and to make the steps between classes narrower. New classes G and I correspond to 18" and 22" radius in HO scale. New classes K, M, and O divide the differences between adjacent classes, while new class Q is essentially specific to Union Pacific 4-12-2 locomotives. In making these additions, it was felt desirable to standardize the ratio of maximum rigid wheelbase to curve radius at roughly 10 ½ to 1. N scale radii were determined to the nearest 1/8 inch, while those for larger scales were determined to the nearest half inch. To accommodate modelers outside the United States, minimum radius values are provided in millimeters as well as in inches.

25 The maximum driving wheel sizes for each equipment class were also tabulated, as this information may be better known than the wheelbase. These values are in inches as such units were in general use in the US and Canada during the steam era.

30 As steam locomotives grew larger and more powerful, additional driving axles were added to distribute the weight. Some were built as “articulated” locomotives, with the driving wheels divided into two or three groups to enable them to negotiate tighter curves than the same number of axles in a rigid frame. In setting model standards, consideration must be given to overall length as well as the rigid wheelbase to determine an appropriate classification. A note in the pre-1992 edition specified that the minimum radius be increased two classes for such locomotives, compared to a non-articulated locomotive with the same rigid wheelbase. Thus, if a Pacific with 69" drivers might be able to negotiate former class L curves, a Challenger with similar drivers would be restricted to class N. In HO scale, the minimum radii are 20" and 26.5" respectively. In the 1992 and onwards

40 revisions the Pacific would fall in class H and to apply a similar radius to the Challenger, it would need to be increased four classes to class L. However, some articulated models allow both sets of drivers to rotate with respect to the boiler, and they may be able to negotiate sharper curves. For this reason Note 2 may be somewhat conservative. In the case of duplex locomotives with two groups of drivers and two sets of cylinders, but a rigid frame, the total wheelbase determines the
45 classification.

On the other hand, Notes 7 and 8, allowing one class reduction for “blind” (flangeless) drivers or span bolster cars, are essentially unchanged. A greater reduction may be technically feasible, but appearance will be compromised to a degree that cannot be recommended. The application of these
50 notes has been restricted to 15-foot wheelbase locomotives and 50-foot cars or greater, without diaphragms.

Truck mounted couplers on freight cars have been broken out as a separate column. Although not representing prototype practice, they find some use in entry level equipment where they permit slight reductions in radius. The maximum length of freight cars with body mounted couplers has been set at 36' for class E.

55 A number of recent passenger car models incorporate full width diaphragms. The edges of these diaphragms must compress on the inside of the curve to enable the car to negotiate the curve, and to the extent they spread apart on the outer edge the appearance will be unrealistic. Some recent models represented articulated trains, most of which also had full width diaphragms. It is recommended that either of these types be run on class N or greater track, similar to the steam
60 engines which pulled such trains.

Reduction in turnout frog number for blind flanges or truck mounted couplers has been eliminated. However, a number 4.5 frog is now recognized, which may be applicable on industrial track. It is noted that there are relatively few turnout frogs commercially available. New recommendations for frogs used on equilateral (wye) and curved turnouts have been added. The former note concerning
65 use of turnouts on three rail track has been modified to apply to center third rail for power supply, primarily found on tinplate layouts. Where outside third rail is used gaps can be avoided by placing third rail sections adjacent to both outside (non-frog) running rails. The legacy practice of using outside third rail pickup even for locomotives based on steam or diesel prototypes is now too rare to be considered in this kind of Recommended Practice.

70 The system of letter keys to identify equipment has been retained, but the Former Classification Keys values introduced by the 1992 revision were removed in the 2026 revision.

Civil engineers measure curves in degrees of curvature in 100 feet, measured in a straight line between two points on the center line of the track (a “chord”). If both the radius and the chord are measured in scale feet, model curves can be measured in the same way down to a minimum radius
75 of 50 feet. At this value the curve diameter is 100 feet, and no chord can be shorter than this value. Classification Key B represents this value and Key A, would be about 72% of this value.

In section 2.2 Track Dimensions, the value for the Curve Degrees of Classification Key A has been set to “(undefined)” as the chord for a 36' radius curve would be below the 100 feet chord length. Prior to the 2026 revision of RP-11 this value was left blank.

80 3 Document History

Date	Description
April 2017	First Revision by Alex Schneider
February 2026	Second Revision by Yaron Bandell

Important Notices and Disclaimers Concerning NMRA Standards Documents

The Standards (S), Recommended Practices (RP), Technical Note (TN), and Technical Information (TI) documents of the National Model Railroad Association ("NMRA Standards documents") are made available for use subject to important notices and legal disclaimers. These notices and disclaimers, or a reference to this page, appear in all standards and may be found under the heading "Important Notices and Disclaimers Concerning NMRA Standards Documents."

Notice and Disclaimer of Liability Concerning the Use of NMRA Standards Documents

NMRA Standards documents are developed within the Standards and Conformance Department of the NMRA in association with certain Working Groups, members, and representatives of manufacturers and sellers. NMRA develops its standards through a consensus development process, which brings together volunteers representing varied viewpoints and interests to achieve the final product. NMRA Standards documents are developed by volunteers with modeling, railroading, engineering, and industry-based expertise. Volunteers are not necessarily members of NMRA, and participate without compensation from NMRA.

NMRA does not warrant or represent the accuracy or completeness of the material contained in NMRA Standards documents, and expressly disclaims all warranties (express, implied and statutory) not included in this or any other document relating to the standard or recommended practice, including, but not limited to, the warranties of: merchantability; fitness for a particular purpose; non-infringement; and quality, accuracy, effectiveness, currency, or completeness of material. In addition, NMRA disclaims any and all conditions relating to results and workmanlike effort. In addition, NMRA does not warrant or represent that the use of the material contained in NMRA Standards documents is free from patent infringement. NMRA Standards documents are supplied "AS IS" and "WITH ALL FAULTS."

Use of NMRA Standards documents is wholly voluntary. The existence of an NMRA Standard or Recommended Practice does not imply that there are no other ways to produce, test, measure, purchase, market, or provide other goods and services related to the scope of the NMRA Standards documents. Furthermore, the viewpoint expressed at the time that NMRA approves or issues a Standard or Recommended Practice is subject to change brought about through developments in the state of the art and comments received from users of NMRA Standards documents.

In publishing and making its standards available, NMRA is not suggesting or rendering professional or other services for, or on behalf of, any person or entity, nor is NMRA undertaking to perform any duty owed by any other person or entity to another. Any person utilizing any NMRA Standards document, should rely upon their own independent judgment in the exercise of reasonable care in any given circumstances or, as appropriate, seek the advice of a competent professional in determining the appropriateness of a given NMRA Standards document.

IN NO EVENT SHALL NMRA BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO: THE NEED TO PROCURE SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE PUBLICATION, USE OF, OR RELIANCE UPON ANY STANDARD OR RECOMMENDED PRACTICE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE AND REGARDLESS OF WHETHER SUCH DAMAGE WAS FORESEEABLE.

Translations

NMRA's development of NMRA Standards documents involves the review of documents in English only. In the event that an NMRA Standards document is translated, only the English version published by NMRA is the approved NMRA Standards document.

Official Statements

A statement, written or oral, that is not processed in accordance with NMRA policies for distribution of NMRA communications, or approved by the Board of Directors, an officer or committee chairperson, shall not be considered or inferred to be the official position of NMRA or any of its committees and shall not be considered to be, nor be relied upon as, a formal position of NMRA.

Comments on Standards

Comments for revision of NMRA Standards documents are welcome from any interested party, regardless of membership. However, **NMRA does not provide interpretations, consulting information, or advice pertaining to NMRA Standards documents.**

Suggestions for changes in documents should be in the form of a proposed change of text, together with appropriate supporting comments. Since NMRA standards represent a consensus of concerned interests, it is important that any responses to comments and questions also receive the concurrence of a balance of interests. For this reason, NMRA, its departments, Working Groups or committees cannot provide an instant response to comments, or questions except in those cases where the matter has previously been addressed. For the same reason, NMRA does not respond to interpretation requests. Any person who would like to participate in evaluating comments or in revisions to NMRA Standards documents may request participation in the relevant NMRA working group.

Laws & Regulations

Users of NMRA Standards documents should consult all applicable laws and regulations. Compliance with the provisions of any NMRA Standards document does not constitute compliance to any applicable regulatory requirements. Implementers of the standard are responsible for observing or referring to the applicable regulatory requirements. NMRA does not, by the publication of NMRA Standards documents, intend to urge action that is not in compliance with applicable laws, and NMRA Standards documents may not be construed as doing so.

Copyrights

NMRA Standards documents are copyrighted by NMRA under US and international copyright laws. They are made available by NMRA and are adopted for a wide variety of both public and private uses. These include both use, by reference, in laws and regulations, and use in private self-regulation, standardization, and the promotion of modeling, structural and engineering practices and methods. By making NMRA Standards documents available for use and adoption by public authorities and private users, NMRA does not waive any rights in copyright to the NMRA Standards documents.

IMPORTANT NOTICE

NMRA Standards documents do not guarantee or ensure safety, security, health, or environmental protection, or ensure against interference with or from other systems, devices or networks. NMRA Standards documents development activities consider research and information presented to the standards development group in developing any safety recommendations. Other information about safety practices, changes in technology or technology implementation, or impact by peripheral systems also may be pertinent to safety considerations during implementation of the standard. Implementers and users of NMRA Standards documents are responsible for determining and complying with all appropriate safety, security, environmental, health, and interference protection practices and all applicable laws and regulations.